L(3,1) - LABELING FOR SOME EXTENDED DUPLICATE GRAPHS

P.Indira ${ }^{1}$, B.Selvam ${ }^{2}$, K.Thirusangu ${ }^{3}$
${ }^{1}$ Research Scholar, S.I.V.E.T College, University of Madras, Chennai, India
${ }^{1}$ Department of Mathematics, St.Thomas College of Arts and Science, Chennai, India,
${ }^{2,3}$ Department of Mathematics, S.I.V.E.T. College, Gowrivakkam, Chennai-600 073, India.

Abstract

In this paper, we investigate the extended duplicate graph of triangular snake graph and quadrilateral snake graph admits $\mathrm{L}(3,1)$ - labeling.

AMS Subject Classification: 05C78.
Keywords: Duplicate graph, Extended duplicate graph, Triangular snake graph, Quadrilateral snake graph, $\mathrm{L}(3,1)$ - labeling.

1. Introduction

Graph labeling is one of the most important area in graph theory. The concept of graph labeling was introduced by Rosa in 1967 [4]. For a dynamic survey of various graph labeling we refer to J.A.Gallian[3]. Griggs and Yen[5] defined $L(2,1)$ labeling of the graph $G=(V, E)$ where f is a function which assigns labels to every $u, v \in V$ from the set of positive integer such that $|f(u)-f(v)| \geq 2$ if $\mathrm{d}(\mathrm{u}, \mathrm{v})=1$ and $|\mathrm{f}(\mathrm{u})-\mathrm{f}(\mathrm{v})| \geq 1$ if $\mathrm{d}(\mathrm{u}, \mathrm{v})=2$.
E.Sampthkumar [1] introduced the concept of duplicate graph. Thirusangu et al.[2] have introduced the concept of extended duplicate graph. G.J.Chang and D.Kuo et al., on $\mathrm{L}(\mathrm{d}, 1)$-Labeling of graphs. In $L(3,1)$-labeling of a graph $G=(V, E)$ where f is a function which assigns label to every $u, v \in V$ from the set of positive integer such that $|f(u)-f(v)| \geq 3$ if $d(u, v)=1$ and $|f(u)-f(v)| \geq 1$ if $d(u, v)=2$. The $\mathrm{L}(3,1)$ labeling number, $\lambda(\mathrm{G})$ of G is the smallest number λ such that G has an $\mathrm{L}(3,1)$ labeling with λ as the maximum label.

2. Preliminaries

In this section, we give the basic definitions which are relevant to this paper. Let $\mathrm{G}(\mathrm{V}, \mathrm{E})$ be a finite, simple and undirected graph with p vertices and q edges.

Definition :2.1 Triangular snake

A triangular snake TS_{m} is obtained from a path $u_{1}, u_{2}, \ldots, u_{\mathrm{m}+1}$ by connecting u_{i} and $u_{\mathrm{i}+1}$ to a new vertex v_{i}, for $1 \leq i \leq m$, where ' m ' is the number of edges of the path.

TRIANGULAR SNAKE GRAPH

Definition: 2.2 Quadrilateral snake graph

A quadrilateral snake QS_{m} is obtained from a path $u_{1, u_{2}, u_{3}, \ldots \ldots, u_{\mathrm{n}}}$ by joining u_{i} and $u_{\mathrm{i}+1}$ to two new vertex v_{i} and w_{i} respectively and then joining v_{i} and $w_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}-1$, where ' m ' is the number of edges of the path. In general, a quadrilateral snake has $3 m+1$ vertices and $4 m$ edges.

QUADRILATERAL SNAKE GRAPH

Definition : 2.3 Duplicate graph

A Simple graph G with vertex set V and edge set E. The duplicate graph of G is $D G=\left(V_{1}, E_{1}\right)$ where the vertex set $\mathrm{V}_{1}=\mathrm{VUV}^{\prime}$ and $\mathrm{V} \cap \mathrm{V}^{\prime}=\phi$ and $h: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ is bijective .The edge set E_{1} of DG is defined as the edge $a b \in \mathrm{E}$ iff both edges $a b^{\prime}$ and $a b$ are in E_{1}.

Definition : 2.4 Extended duplicate graph of triangular snake

Let $\mathrm{DG}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ be a duplicate graph of the triangular snake graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$. Extended duplicate graph of triangular snake is obtained by adding the edge $v_{2} v_{2}^{\prime}$ to the duplicate graph and it is denoted by EDG $\left(\mathrm{TS}_{\mathrm{m}}\right)$. Clearly it has $4 \mathrm{~m}+2$ vertices and $6 \mathrm{~m}+1$ edges, where ' m ' is the number of edges.

Definition :2.5 Extended duplicate graph of quadrilateral snake

Let $\mathrm{DG}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$ be a duplicate graph of the quadrilateral snake graph $\mathrm{G}(\mathrm{V}, \mathrm{E})$. Extended duplicate graph of quadrilateral snake graph is obtained by adding the edge $v_{2} v_{2}^{\prime}$ to the duplicate graph and it is denoted by EDG $\left(\mathrm{QS}_{\mathrm{m}}\right)$. Clearly it has $6 \mathrm{~m}+2$ vertices and $8 \mathrm{~m}+1$ edges, where ' m ' is the number of edges.

Definition :2.6 L(2,1) - Labeling

An $L(2,1)$ labeling or distance two labeling of a graph G is a function f from the vertex set $V(G)$ to the set of all non-negative integers such that $|f(x)-f(y)| \geq 2$ if $d(x, y)=1$ and $|f(x)-f(y)| \geq$ 1 if $\mathrm{d}(\mathrm{x}, \mathrm{y})=2$. The $\mathrm{L}(2,1)$ labeling number $\lambda(\mathrm{G})$ of G is the smallest number k such that G has an $\mathrm{L}(2,1)$ labeling with $\max \{\mathrm{f}(\mathrm{v}), \mathrm{v} \in \mathrm{V}(\mathrm{G})\}=\mathrm{k}$.

Definition :2.7 L(3,1) - Labeling

Let G be a graph with set of vertices V and set of edges E. Let f be a function $f: V \rightarrow N$, where f is an $L(3,1)$ - labeling of G if, for all $u, v \in V,|f(u)-f(v)| \geq 3$ if $d(u, v)=1$ and $|f(u)-f(v)| \geq 1$ if $d(u, v)=2$.

Definition : 2.8

The difference between maximum and minimum values of f for all possible f is called span of the labeling, and it is denoted by $\lambda_{3,1}(\mathrm{G})$ or simple $\lambda(\mathrm{G})$ or λ, positive integer λ to be used to label a graph G by $\mathrm{L}(3,1)$-labeling.

3. MAIN RESULTS

3.1: L(3,1)-LABELING FOR TRIANGULAR SNAKE GRAPH EDG(TSm) , $\mathbf{m} \geq 1$

Here, we present an algorithm and prove the existence of $\mathrm{L}(3,1)$-labeling for $\operatorname{EDG}\left(\mathrm{TS}_{\mathrm{m}}\right)$.

Algorithm-1

Procedure - [L(3,1)-labeling for $\left.\operatorname{EDG}\left(\mathbf{T S}_{\mathrm{m}}\right), \mathrm{m} \geq 1\right]$

$$
\begin{aligned}
& \mathrm{V} \leftarrow\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{2 \mathrm{~m}}, \mathrm{v}_{2 \mathrm{~m}+1}, \mathrm{v}^{\prime}{ }_{1}, \mathrm{v}^{\prime}{ }_{2}, \mathrm{v}_{3}^{\prime} \ldots \mathrm{v}^{\prime}{ }_{2 \mathrm{~m}}, \mathrm{v}^{\prime}{ }_{2 \mathrm{~m}+1}\right\} \\
& \mathrm{E} \leftarrow\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots, \mathrm{e}_{3 \mathrm{~m}}, \mathrm{e}_{3 \mathrm{~m}+1}, \mathrm{e}^{\prime}, \mathrm{e}^{\prime}{ }_{2}, \ldots, \mathrm{e}^{\prime}{ }_{3 \mathrm{~m}}\right\} \\
& \\
& \mathrm{v}_{1} \leftarrow 0, \mathrm{v}_{2} \leftarrow 7, \mathrm{v}_{3} \leftarrow 6, \mathrm{v}_{4} \leftarrow 1, \mathrm{v}_{5} \leftarrow 8 \\
& \quad \mathrm{v}^{\prime}{ }_{1} \leftarrow 0, \mathrm{v}^{\prime}{ }_{2} \leftarrow 3, \mathrm{v}^{\prime}{ }_{3} \leftarrow 4, \mathrm{v}^{\prime}{ }_{4} \leftarrow 1, \mathrm{v}^{\prime}{ }_{5} \leftarrow 9
\end{aligned}
$$

for $\mathrm{i}=0$ to (m-3)/4 do

$$
\mathrm{v}_{6+8 \mathrm{i}} \leftarrow 0 ; \mathrm{v}_{7+8 \mathrm{i}} \leftarrow 2 ; \mathrm{v}^{\prime}{ }_{6+8 \mathrm{i}} \leftarrow 5 ; \mathrm{v}^{\prime}{ }_{6+8 \mathrm{i}} \leftarrow 3
$$

end for
for $\mathrm{i}=0$ to ($\mathrm{m}-4$)/4 do

$$
\mathrm{v}_{8+8 \mathrm{i}} \leftarrow 6 ; \mathrm{v}_{9+8 \mathrm{i}} \leftarrow 9 ; \mathrm{v}^{\prime}{ }_{8+8 \mathrm{i}} \leftarrow 6 ; \mathrm{v}^{\prime}{ }_{9+8 \mathrm{i}} \leftarrow 10
$$

end for
for $\mathrm{i}=0$ to (m-5)/4 do

$$
\mathrm{v}_{10+8 \mathrm{i}} \leftarrow 0 ; \mathrm{v}_{11+8 \mathrm{i}} \leftarrow 1 ; \mathrm{v}^{\prime}{ }_{10+8 \mathrm{i}} \leftarrow 5 ; \mathrm{v}^{\prime}{ }_{11+8 \mathrm{i}} \leftarrow 4
$$

end for
for $\mathrm{i}=0$ to ($\mathrm{m}-6$)/4 do

$$
\mathrm{v}_{12+8 \mathrm{i}} \leftarrow 7 ; \mathrm{v}_{13+8 \mathrm{i}} \leftarrow 10 ; \mathrm{v}^{\prime}{ }_{12+8 \mathrm{i}} \leftarrow 6 ; \mathrm{v}^{\prime}{ }_{13+8 \mathrm{i}} \leftarrow 11
$$

end for
end procedure

Theorem 3.1: The extended duplicate graph of triangular snake graph admits $\mathrm{L}(3,1)$ - labeling and its number $\lambda(\mathrm{G})$ is 11 .

Proof: Let TS_{m} be the triangular snake graph and $\operatorname{EDG}\left(\mathrm{TS}_{\mathrm{m}}\right)$ be the extended duplicate graph of triangular snake graph.

Define the set of vertices and edges are

$$
\begin{aligned}
& \mathrm{V}(\mathrm{G})=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{2 \mathrm{~m}}, \mathrm{v}_{2 \mathrm{~m}+1}, \mathrm{v}^{\prime}{ }_{1}, \mathrm{v}^{\prime}{ }_{2}, \mathrm{v}^{\prime} 3, \ldots, \mathrm{v}^{\prime}{ }_{2 m}, \mathrm{v}^{\prime}{ }_{2 m+1}\right\} \\
& \mathrm{E}(\mathrm{G})=\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, e_{3}, \ldots, \mathrm{e}_{3 \mathrm{~m}}, \mathrm{e}_{3 \mathrm{~m}+1}, \mathrm{e}^{\prime}{ }_{1}, \mathrm{e}^{\prime}{ }_{2}, \ldots, \mathrm{e}^{\prime}{ }_{3 m}\right\}
\end{aligned}
$$

Let $V(G)=V_{1}(G) \cup V_{2}(G)$,
Where $V_{1}=\left\{\mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq 2 \mathrm{~m}+1\right\}$

$$
V_{2}=\left\{v_{\mathrm{i}}^{\prime} / 1 \leq \mathrm{i} \leq 2 \mathrm{~m}+1\right\}
$$

For V_{1} and V_{2}, we define a mapping $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{N} \cup\{0\}$ such that $|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})| \geq 3$ if $\mathrm{d}(\mathrm{x}, \mathrm{y})=1$ and $|f(x)-f(y)| \geq 1$ if $d(x, y)=2$.

Using algorithm 1 , the vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}^{\prime}{ }_{1}, \mathrm{v}^{\prime}{ }_{2}, \mathrm{v}^{\prime}{ }_{3}, \mathrm{v}^{\prime}{ }_{4}$ and $\mathrm{v}^{\prime}{ }_{5}$ receive the labels $0,7,6,1,8$, $0,3,4,1$ and 9 respectively;
i) $\mathrm{f}\left(\mathrm{v}_{6+8 \mathrm{i}}\right)=0$ and $\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{6+8 \mathrm{i}}\right)=5 \quad$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-3) / 4$
ii) $\quad \mathrm{f}\left(\mathrm{v}_{7+8 \mathrm{i}}\right)=2$ and $\mathrm{f}^{\prime}\left(\mathrm{v}^{\prime}{ }_{7+8 \mathrm{i}}\right)=3 \quad$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-3) / 4$
iii) $\mathrm{f}\left(\mathrm{v}_{8+8 \mathrm{i}}\right)=6$ and $\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{8}+8 \mathrm{i}\right)=6$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-4) / 4$
iv) $f\left(\mathrm{v}_{9+8 \mathrm{i}}\right)=9$ and $\quad \mathrm{f}\left(\mathrm{v}^{\prime} 9+8 \mathrm{i}\right)=10 \quad$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-4) / 4$
v) $\mathrm{f}\left(\mathrm{v}_{10+8 \mathrm{i}}\right)=0$ and $\mathrm{f}\left(\mathrm{v}^{\prime} 10+8 \mathrm{i}\right)=5$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-5) / 4$
vi) $\mathrm{f}\left(\mathrm{v}_{11+8 \mathrm{i}}\right)=1$ and $\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{11+8 \mathrm{i}}\right)=4 \quad$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-5) / 4$
vii) $\mathrm{f}\left(\mathrm{v}_{12+8 \mathrm{i}}\right)=7$ and $\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{12+8 \mathrm{i}}\right)=6 \quad$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-6) / 4$
viii) $\mathrm{f}\left(\mathrm{v}_{13+8 \mathrm{i}}\right)=10$ and $\mathrm{f}\left(\mathrm{v}^{\prime} 13+8 \mathrm{i}\right)=11$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-6) / 4$

Thus all the vertices are labeled.
Now to prove that $\mathrm{L}(3,1)$ - labeling number $\lambda(\mathrm{G})$ is 11 .

Case 1: Let x, y be any two vertices in $V_{1}(G)$.
Subcase (i): For $m=1$
Let x and y be any two non-adjacent vertices on $V_{1}(G)$ such that $x=v_{m+1}, y=v_{m+2}$ then $f(x)=7$ and $f(y)=6, d(x, y)=2$. Therefore $d(x, y)+|f(x)-f(y)|=2+|7-6|=2+1=3 \geq 3$.

Subcase (ii): For m=2
Let x and y be any two non-adjacent vertices on $V_{1}(G)$ such that $x=v_{m+2}, y=v_{m+3}$ then $f(x)=1$ and $\mathrm{f}(\mathrm{y})=8, \mathrm{~d}(\mathrm{x}, \mathrm{y})=2$. Therefore $\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=2+|1-8|=2+7=9 \geq 3$.

Subcase (iii): For $m=4 n-1, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{1}(G)$ such that $x=v_{6+8 i}, y=v_{7+8 i}$ then $f(x)=0$ and $\mathrm{f}(\mathrm{y})=2, \mathrm{~d}(\mathrm{x}, \mathrm{y})=2$. Therefore $\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=2+|0-2|=2+2=4 \geq 3$.

Subcase (iv): For $m=4 n, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{1}(G)$ such that $x=v_{8+8 i}, y=v_{9+8 i}$ then $f(x)=6$ and $\mathrm{f}(\mathrm{y})=9, \mathrm{~d}(\mathrm{x}, \mathrm{y})=2$. Therefore $\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=2+|6-9|=2+3=5 \geq 3$.

Subcase (v): For $m=4 n+1, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{1}(G)$ such that $x=v_{10+8 i}, y=v_{11+8 i}$ then $f(x)=0$ and $\mathrm{f}(\mathrm{y})=1, \mathrm{~d}(\mathrm{x}, \mathrm{y})=2$. Therefore $\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=2+|0-1|=2+1=3 \geq 3$.

Subcase (vi): For $m=4 n+2, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{1}(G)$ such that $x=v_{12+8 i}, y=v_{13+8 i}$ then $f(x)=7$ and $\mathrm{f}(\mathrm{y})=10, \mathrm{~d}(\mathrm{x}, \mathrm{y})=2$. Therefore $\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=2+|7-10|=2+3=4 \geq 3$.

Case 2: Let x and y be any two vertices in $V_{2}(G)$.
Subcase (i): For m=1
Let x and y be any two non-adjacent vertices on $V_{2}(G)$ such that $x=v^{\prime}{ }_{m+1}, y=v^{\prime}{ }_{m+2}$ then $f(x)=3$ and $f(y)=4, d(x, y)=2$. Therefore $d(x, y)+|f(x)-f(y)|=2+|3-4|=2+1=3 \geq 3$.

Subcase (ii): For $\mathrm{m}=2$
Let x and y be any two non-adjacent vertices on $V_{2}(G)$ such that $x=v^{\prime}{ }_{m+2}, y=v^{\prime}{ }_{m+3}$ then $f(x)=1$ and $\mathrm{f}(\mathrm{y})=9, \mathrm{~d}(\mathrm{x}, \mathrm{y})=2$. Therefore $\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=2+|1-9|=2+8=10 \geq 3$.

Subcase (iii): For $m=4 n-1, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{2}(G)$ such that $x=v^{\prime}{ }_{6+8 i}, y=v^{\prime}{ }_{7+8 i}$ then $f(x)=5$ and $f(y)=3, d(x, y)=2$. Therefore $d(x, y)+|f(x)-f(y)|=2+|5-3|=2+2=4 \geq 3$.

Subcase (iv): For $m=4 n, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{2}(G)$ such that $x=v^{\prime}{ }_{8+8 i}, y=v^{\prime} 9+8 i$ then $f(x)=6$ and $\mathrm{f}(\mathrm{y})=10, \mathrm{~d}(\mathrm{x}, \mathrm{y})=2$. Therefore $\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=2+|6-10|=2+4=6 \geq 3$.

Subcase (v): For $m=4 n+1, n \in N$.
Let x and y be any two non-adjacent vertices on $\mathrm{V}_{2}(\mathrm{G})$ such that $\mathrm{x}=\mathrm{v}^{\prime}{ }_{10+8 \mathrm{i}}, \mathrm{y}=\mathrm{v}^{\prime}{ }_{11+8 i}$ then $\mathrm{f}(\mathrm{x})=5$ and $f(y)=4, d(x, y)=2$. Therefore $d(x, y)+|f(x)-f(y)|=2+|5-4|=2+1=3 \geq 3$.

Subcase (vi): For $m=4 n+2, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{2}(G)$ such that $x=v^{\prime}{ }_{12+8 i}, y=v^{\prime}{ }_{13+8 i}$ then $f(x)=6$ and $f(y)=11, d(x, y)=2$. Therefore $d(x, y)+|f(x)-f(y)|=2+|6-11|=2+5=7 \geq 3$

Case 3: Let x and y be any two vertices in $V_{1}(G)$ and $V_{2}(G)$.
Subcase (i): For $m=1$
Let x and y be any two adjacent vertices on $V_{1}(G) \& V_{2}(G)$ such that $x=v_{m+1}, y=v^{\prime}{ }_{m+1}$ then $f(x)=7$ and $f(y)=3, d(x, y)=1$. Therefore $d(x, y)+|f(x)-f(y)|=1+|7-3|=1+4=5 \geq 3$.

Subcase (ii): For $m=2$,
Let x and y be any two adjacent vertices on $V_{1}(G)$ and $V_{2}(G)$ such that $x=v_{m+2}, y=v_{m+3}$ then $f(x)=1$ and $\mathrm{f}(\mathrm{y})=9, \mathrm{~d}(\mathrm{x}, \mathrm{y})=1$. Therefore $\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=1+|1-9|=1+8=9 \geq 3$.

Subcase (iii): For $m=4 n-1, n \in N$.
Let x and y be any two adjacent vertices on $V_{1}(G) \& V_{2}(G)$ such that $x=v_{6+8 i}, y=v^{\prime}{ }_{7+8 i}$ then $f(x)=0$ and $f(y)=3, d(x, y)=1$. Therefore $d(x, y)+|f(x)-f(y)|=1+|0-3|=1+3=4 \geq 3$.

Subcase (iv): For $m=4 n$, $n \in N$.
Let x and y be any two adjacent vertices on $V_{1}(G) \& V_{2}(G)$ such that $x=v_{8+8 i}, y=v^{\prime}{ }_{9+8 i}$ then $f(x)=6$ and $f(y)=10, d(x, y)=1$. Therefore $d(x, y)+|f(x)-f(y)|=1+|6-10|=1+4=5 \geq 3$.

Subcase (v): For $m=4 n+1, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{1}(G) \& V_{2}(G)$ such that $x=v_{10+8 i}, y=v^{\prime}{ }_{11+8 i}$ then $f(x)=0$ and $\mathrm{f}(\mathrm{y})=4, \mathrm{~d}(\mathrm{x}, \mathrm{y})=1$. Therefore $\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=1+|0-4|=1+4=5 \geq 3$.

Subcase (vi): For $m=4 n+2, n \in N$.
Let x and y be any two adjacent vertices on $V_{1}(G) \& V_{2}(G)$ such that $x=v_{12+8 i}, y=v^{\prime}{ }_{13+8 i}$ then $f(x)=7$ and $\mathrm{f}(\mathrm{y})=11, \mathrm{~d}(\mathrm{x}, \mathrm{y})=1$. Therefore $\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=1+|7-11|=1+4=5 \geq 3$.
Thus, by continuing this process of x and y, we get

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=\left\{\begin{array}{l}
\geq 3 \text { if } d=2 \\
\geq 4 \text { if } d=1
\end{array}\right.
$$

Hence, the extended duplicate graph of triangular snake graph admits $\mathrm{L}(3,1)$ - labeling and its number $\lambda(\mathrm{G})$ is 11 .

Example 1: L(3,1)- labeling diagram in $\operatorname{EDG}\left(\mathrm{TS}_{5}\right)$ and $\operatorname{EDG}\left(\mathrm{TS}_{6}\right)$ is shown in figures (1) \& (2)

Fig 2 - $\operatorname{EDG}\left(\mathrm{TS}_{6}\right)$

3.2: L(3,1)-LABELING FOR QUADRILATERAL SNAKE GRAPH EDG(QSm) , $\mathbf{m} \geq 1$

Here, we present an algorithm and prove the existence of $\mathrm{L}(3,1)$-labeling for EDG(QS_{m}).

Algorithm- 2

Procedure - [L(3,1)-labeling for $\left.\operatorname{EDG}\left(\mathbf{Q S}_{\mathrm{m}}\right), \mathrm{m} \geq 1\right]$
$\mathrm{V} \leftarrow\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} \ldots \mathrm{v}_{3 \mathrm{~m}}, \mathrm{v}_{3 \mathrm{~m}+1}, \mathrm{v}^{\prime}{ }_{1}, \mathrm{v}^{\prime}{ }_{2}, \mathrm{v}^{\prime}{ }_{3} \ldots \mathrm{v}^{\prime}{ }_{3 \mathrm{~m}}, \mathrm{v}^{\prime}{ }_{3 \mathrm{~m}+1}\right\}$
$\mathrm{E} \leftarrow\left\{\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3} \ldots \mathrm{e}_{4 \mathrm{~m}}, \mathrm{e}_{4 \mathrm{~m}+1}, \mathrm{e}^{\prime}{ }_{1}, \mathrm{e}^{\prime}{ }_{2}, \mathrm{e}^{\prime}{ }_{3}, \ldots, \mathrm{e}^{\prime}{ }_{4 \mathrm{~m}}\right\}$

$$
\mathrm{v}_{1} \leftarrow 0, \mathrm{v}^{\prime}{ }_{1} \leftarrow 0
$$

for $\mathrm{i}=0$ to $(\mathrm{m}-1) / 3 \mathrm{do}$

$$
\mathrm{v}_{2+9 \mathrm{i}} \leftarrow 6 ; \mathrm{v}_{3+9 \mathrm{i}} \leftarrow 7 ; \mathrm{v}_{4+9 \mathrm{i}} \leftarrow 4 ; \mathrm{v}^{\prime}{ }_{2+9 \mathrm{i}} \leftarrow 3 ; \mathrm{v}^{\prime}{ }_{3+9 \mathrm{i}} \leftarrow 1 ; \mathrm{v}^{\prime}{ }_{4+9 \mathrm{i}} \leftarrow 4
$$

end for
for $\mathrm{i}=0$ to $(\mathrm{m}-2) / 3$ do

$$
\mathrm{v}_{5+9 \mathrm{i}} \leftarrow 1 ; \mathrm{v}_{6+9 \mathrm{i}} \leftarrow 0 ; \mathrm{v}_{7+9 \mathrm{i}} \leftarrow 8 ; \mathrm{v}^{\prime}{ }_{5+9 \mathrm{i}} \leftarrow 7 ; \mathrm{v}^{\prime}{ }_{6+9 \mathrm{i}} \leftarrow 5 ; \mathrm{v}_{7+9 \mathrm{i}} \leftarrow 8
$$

end for
for $\mathrm{i}=0$ to $(\mathrm{m}-3) / 3$

$$
\mathrm{v}_{8+9 \mathrm{i}} \leftarrow 1 ; \mathrm{v}_{9+9 \mathrm{i}} \leftarrow 3 ; \mathrm{v}_{10+9 \mathrm{i}} \leftarrow 11 ; \mathrm{v}^{\prime}{ }_{8+9 \mathrm{i}} \leftarrow 0 ; \mathrm{v}^{\prime}{ }_{9+9 \mathrm{i}} \leftarrow 5 ; \mathrm{v}^{\prime}{ }_{10+9 \mathrm{i}} \leftarrow 11
$$

end for
end procedure

Theorem 3.2: The extended duplicate graph of Quadrilateral snake graph admits $\mathrm{L}(3,1)$-labeling and its number $\lambda(\mathrm{G})$ is 11 .

Proof: Let QSm be the quadrilateral snake graph and $\operatorname{EDG}(\mathrm{QSm})$ be the extended duplicate graph of quadrilateral snake graph.
Define the set of vertices and edges are

$$
\begin{aligned}
& V(G)=\left\{v_{1}, v_{2}, v_{3} \ldots v_{3 m}, v_{3 m+1}, v^{\prime}{ }_{1}, v^{\prime}{ }_{2}, v^{\prime}{ }_{3} \ldots, v^{\prime}{ }_{3 m}, v^{\prime}{ }_{3 m+1}\right\} \\
& E(G)=\left\{e_{1}, e_{2}, e_{3} \ldots e_{4 m}, e_{4 m+1}, e^{\prime}{ }_{1}, e^{\prime}{ }_{2}, e^{\prime}{ }_{3}^{\prime} \ldots, e^{\prime} 4 m\right.
\end{aligned}
$$

Assume that $\mathrm{V}(\mathrm{G})=\mathrm{V}_{1} \cup \mathrm{~V}_{2}$,

$$
\begin{aligned}
\text { where } & \mathrm{V}_{1}=\left\{\mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq 3 \mathrm{~m}+1\right\} \\
& \mathrm{V}_{2}=\left\{\mathrm{v}_{\mathrm{i}} / 1 \leq \mathrm{i} \leq 3 \mathrm{~m}+1\right\}
\end{aligned}
$$

For V_{1} and V_{2}, we define a mapping $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow \mathrm{N} \cup\{0\}$
such that $|f(x)-f(y)| \geq 3$ if $d(x, y)=1$ and

$$
|f(x)-f(y)| \geq 1 \text { if } d(x, y)=2 .
$$

Using the algorithm 2 , the vertices v_{1} and v^{\prime} receive the label 0 ;
i) $\mathrm{f}\left(\mathrm{v}_{2+9 \mathrm{i}}\right)=0$ and $\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{2+9 \mathrm{i}}\right)=3$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-1) / 3$
ii) $\mathrm{f}\left(\mathrm{v}_{3+9 \mathrm{i}}\right)=7$ and $\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{3+9} \mathrm{y}_{\mathrm{i}}\right)=1 \quad$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-1) / 3$
iii) $\mathrm{f}\left(\mathrm{v}_{4+9 \mathrm{i}}\right)=4$ and $\mathrm{f}\left(\mathrm{v}^{\prime} 4+9 \mathrm{i}\right)=4 \quad$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-1) / 3$
iv) $f\left(\mathrm{v}_{5}+9 \mathrm{i}\right)=1$ and $\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{5+9 \mathrm{i}}\right)=7 \quad$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-2) / 3$
v) $\mathrm{f}\left(\mathrm{v}_{6+9 \mathrm{i}}\right)=0 \quad$ and $\quad \mathrm{f}\left(\mathrm{v}^{\prime}{ }_{6+9 \mathrm{i}}\right)=5 \quad$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-2) / 3$
vi) $f\left(\mathrm{v}_{7+9 \mathrm{i}}\right)=8$ and $\mathrm{f}\left(\mathrm{v}^{\prime}{ }_{7+9 \mathrm{i}}\right)=8 \quad$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-2) / 3$
vii) $f\left(v_{8+9 i}\right)=1$ and $f\left(v^{\prime}{ }_{8+9 i}\right)=0 \quad$ for $1 \leq i \leq(m-3) / 3$
viii) $f\left(v_{9+9 i}\right)=3$ and $f\left(v^{\prime}{ }_{9+9 \mathrm{i}}\right)=5$ for $1 \leq \mathrm{i} \leq(\mathrm{m}-3) / 3$
ix) $f\left(v_{10+9 i}\right)=11$ and $f\left(v^{\prime}{ }_{10+9 i}\right)=11$ for $1 \leq i \leq(m-3) / 3$

Thus all the vertices are labeled.
Now to prove that $L(3,1)$ - labeling number $\lambda(G)$ is 11 .

Case 1: Let x, y be any two vertices in $V_{1}(G)$.
Subcase (i): For $m=3 n-2, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{1}(G)$, such that $x=v_{2+9 i}, y=v_{3+9 i}$ then $f(x)=6$, $f(y)=7$ and $d(x, y)=2$. Therefore $d(x, y)+|f(x)-f(y)|=2+|6-7|=2+1=3 \geq 3$.

Subcase (ii): For $m=3 n-1, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{1}(G)$, such that $x=v_{5+9 i}, y=v_{6+9 i}$ then $f(x)=1$, $f(y)=0$ and $d(x, y)=2$. Therefore $d(x, y)+|f(x)-f(y)|=2+|1-0|=2+1=3 \geq 3$.

Subcase (iii): For $m=3 n, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{1}(G)$, such that $x=v_{8+9 i}, y=v_{9+9 i}$ then $f(x)=1$, $f(y)=3$ and $d(x, y)=2$. Therefore $d(x, y)+|f(x)-f(y)|=2+|1-3|=2+2=4 \geq 3$.

Case 2: Let x, y be any two vertices in $V_{2}(G)$
Subcase (i): for $m=3 n-2, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{2}(G)$, such that $x=v^{\prime}{ }_{2+9 i}, y=v^{\prime}{ }_{3+9 i}$ then $f(x)=3$, $f(y)=1$ and $d(x, y)=2$. Therefore $d(x, y)+|f(x)-f(y)|=2+|3-1|=2+2=4 \geq 3$.

Subcase (ii): for $m=3 n-1, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{2}(G)$, such that $x=v^{\prime}{ }_{5+9 i}, y=v^{\prime}{ }_{6+9 i}$ then $f(x)=7$, $f(y)=5$ and $d(x, y)=2$. Therefore $d(x, y)+|f(x)-f(y)|=2+|7-5|=2+2=4 \geq 3$.

Subcase (iii): for $m=3 n, n \in N$.
Let x and y be any two non-adjacent vertices on $V_{2}(G)$, such that $x=v^{\prime}{ }_{8+9 i}, y=v^{\prime}{ }_{9+9 i}$ then $f(x)=0$, $f(y)=5$ and $d(x, y)=2$. Therefore $d(x, y)+|f(x)-f(y)|=2+|0-5|=2+5=7 \geq 3$.

Case 3: Let x and y be any two vertices in $V_{1}(G)$ and $v_{2}(G)$.
Subcase (i): for $m=3 n-2, n \in N$.
Let x and y be any two adjacent vertices on $V_{1}(G)$ and $V_{2}(G)$, such that $x=v_{2+9 i}, y=v^{\prime}{ }_{3+9}$ i then $f(x)=6$, $f(y)=3$ and $d(x, y)=1$. Therefore $d(x, y)+|f(x)-f(y)|=1+|6-3|=1+3=4 \geq 3$.

Subcase (ii): for $m=3 n-1, n \in N$.
Let x and y be any two adjacent vertices on $V_{1}(G)$ and $V_{2}(G)$, such that $x=v_{5+9 i}, y=v^{\prime}{ }_{6+9 i}$ then $f(x)=1, f(y)=5$ and $d(x, y)=1$. Therefore $d(x, y)+|f(x)-f(y)|=1+|1-5|=1+4=5 \geq 3$.

Subcase (iii): for $m=3 n, n \in N$.
Let x and y be any two adjacent vertices on $V_{1}(G)$ and $V_{2}(G)$, such that $x=v_{8+9 i}$, $y=v^{\prime}{ }_{9+9 i}$ then $f(x)=1$, $\mathrm{f}(\mathrm{y})=5$ and $\mathrm{d}(\mathrm{x}, \mathrm{y})=1$. Therefore $\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=1+|1-5|=1+4=5 \geq 3$.

Thus, by continuing this process of x and y, we get

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})+|\mathrm{f}(\mathrm{x})-\mathrm{f}(\mathrm{y})|=\left\{\begin{array}{l}
\geq 3 \text { if } d=2 \\
\geq 4 \text { if } d=1
\end{array} .\right.
$$

Hence, the extended duplicate graph of quadrilateral snake graph admits $L(3,1)$ - labeling and its number $\lambda(\mathrm{G})$ is 11 .

Example 2: $L(3,1)$ - labeling diagram in $\operatorname{EDG}\left(\mathrm{QS}_{4}\right)$ and $\operatorname{EDG}\left(\mathrm{QS}_{5}\right)$ is shown in figures $(3) \boldsymbol{\&}(4)$

$L(3,1)$ - LABELING FOR THE GRAPH EDG $\left(Q_{S}\right)$

Fig 3 - $\operatorname{EDG}\left(\right.$ QS $\left._{4}\right)$

L(3,1) - LABELING FOR THE GRAPH EDG $\left(\mathrm{QS}_{5}\right)$

Fig 4 - $\operatorname{EDG}\left(\mathrm{QS}_{5}\right)$

4. Conclusion

In this paper ,we have presented algorithms and proved that the extended duplicate graph of triangular snake graph and quadrilateral snake graph admits L(3,1)-Labeling.

References

1. E.Sampathkumar,"On duplicate graphs", "Journal of the Indian Math". Soc.37(1973),285-293.
2. Thirusangu,K, Selvam.B and Ulaganathan P.P, Cordial labelings in extended

Duplicate Graph of twig graphs , "International Journal of computer", "mathematical sciences and applications", Vol.4, Nos 3-4 ,(2010), pp.319-328.
3. Gallian J.A, "A Dynamic Survey of graph labeling", the Electronic Journal of Combinatories, 19, \# D S6 (2012)
4. Gordon and Breach, Dunod, Paris, A.Rosa, On certain valuations of the vertices of a graph, Theory of graphs, (Intl. Symp. Rome 1966), (1967) 349-355.
5. J.R.Griggs and R.K.Yeh, Labeling with a condition of distance two,SIAM Journal on Discrete math., 5(1992),586 - 595.http://dx.doi.org/10.1137/0405048.
6. G.J.Chang and D.Kuo et al., on L(d,1)-Labeling of graphs Discrete math., 220(2000),57-66. http://dx.doi.org/10.1016/s0012-365x(99)00400-8.

